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Abstract— All the methods for Fault Detection and Isolation
(FDI) involve internal parameters, often called hyperparameters,
that have to be carefully tuned. Most often, tuning is ad hoc
and this makes it difficult to ensure that any comparison
between methods is unbiased. We propose to consider the
evaluation of the performance of a method with respect to
its hyperparameters as a computer experiment, and to achieve
tuning via global optimization based on Kriging and Expected
Improvement. This approach is applied to several residual-
evaluation (or change-detection) algorithms on classical test-
cases. Simulation results show the interest, practicability and
performance of this methodology, which should facilitate the
automatic tuning of the hyperparameters of a method and allow
a fair comparison of a collection of methods on a given set of
test-cases. The computational cost turns out to be much lower
than the one obtained with other general-purpose optimization
methods such as genetic algorithms.

Index Terms— hyperparameter, method adjustment, parame-
ter tuning, residual evaluation, change detection, fault detection
and isolation, efficient global optimization, Kriging

I. INTRODUCTION

A fault detection and isolation (FDI) procedure is usually
made up of a residual generator, and a method for residual
analysis that processes these residuals [1]. This is used to
decide whether a fault is present and then which fault.

Each of the many change-detection methods has internal
parameters that must be carefully tuned. These parameters,
often called hyperparameters, have a strong impact on per-
formance and robustness. The user may thus be at a loss for
selecting the most efficient method. This can be achieved
by first defining a suitable performance criterion and then
finding a way of tuning the hyperparameters of each method
in order to optimize this criterion, on a representative set of
test-cases.

The main existing tools for the tuning of hyperparam-
eters are cross-validation and its variants (k-fold cross-
validation, leave-one-out cross-validation, generalized cross-
validation [2]). Cross-validation is used to estimate the per-
formance for a given value of the hyperparameter vector and
can then be complemented by an optimization procedure to
find the best tuning of these hyperparameters. In [3] and [4],
such approaches based on a discretization of hyperparameter
spaces have been presented. Another method using Bayesian
networks for tuning parameters has been proposed in [5],
where prior knowledge consists of the previous simulation
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runs. All these approaches prove to be extremely computer-
intensive and thus not applicable when the simulation budget
is severely limited.

This paper describes an optimization procedure that is
dedicated to this type of problem, and its application to
the automatic tuning of methods for FDI. Following the
computer experiment framework [6], we propose to use
a global optimization algorithm relying on Kriging and
the notion of Expected Improvement to explore real-valued
hyperparameter spaces effectively at a limited computational
cost.

Section II formally presents the problem and explains
the basics of the tuning methodology. Section III describes
illustrative test-cases, examples of candidate methods to
be tuned and compared, along with classical performance
indices in FDI to be used as optimization criteria. Results
are reported in Section IV, and conclusions and perspectives
in Section V.

II. HYPERPARAMETER-TUNING METHODOLOGY

A. Problem formulation

Assume several FDI methods compete for the same appli-
cation. The j-th method depends on a vector xj ∈ X

j ⊂ R
dj

of hyperparameters, where X
j is the feasible hyperparam-

eter space and dj = dim xj . All of these methods are
to be compared using the same real-valued performance
criterion y. This criterion could combine several performance
indices, e.g., the trade-off between false-alarm and non-
detection rates for change-detection procedures. Tuning the
j-th method means looking for the value of xj that minimizes
y
(
xj

)
. A possible way to compare methods is then to rank

them according to their best value for y.
The tuning of a given method is central to the selection of

the best of them and will now be considered. For the sake
of simplicity, the index j will be omitted in what follows.
The cost function is thus a scalar function y(x), where x ∈
X ⊂ R

d. The only available information is the result of
previous computer experiments that provides the value of
y(x) for given values of x. The procedure is recursive and
we shall assume that we have already computed n samples
forming the vector yn = [y1, ..., yn]

T corresponding to Xn =
[x1, ...,xn]. Since the evaluation of y(x) is expensive, we
shall use a simpler prediction ŷ(x) of y(x) based on these
samples and obtained by Kriging.

B. Basics of Kriging

Kriging has been given this name by the French geostatis-
tician G. Matheron, to recognize the seminal influence of



the work of D.G. Krige on the gold deposit of the Rand, in
South Africa [7]. In Kriging, the function y(·) is modeled
as a Gaussian process Y (·) with mean function m (·) and
covariance function k (·, ·) [8]. More specifically, Y (·) is
written as

Y (x) = fT (x)b+ Z(x)

where f (x) is some known regression function vector (usu-
ally chosen constant or polynomial in x), b is a vector of
unknown regression coefficients to be estimated, and Z(·) is
a zero-mean Gaussian process with known (or parametrized)
covariance function k (·, ·). Kriging is then the search for the
best linear unbiased predictor (BLUP) of Y (·) [9].

The actual covariance k (·, ·) is usually unknown. It is
expressed as

k (Z (xi) , Z (xj)) = σ2
ZR (xi,xj)

where σ2
Z is the process variance and R (·, ·) is a parametric

correlation function. Both σ2
Z and the parameters of R (·, ·)

must be chosen or estimated from the available data. Under
a stationarity assumption, R (xi,xj) depends only on the
displacement vector xi − xj , denoted by h in what follows.
A frequent choice of correlation function, also adopted in the
present paper, is the power exponential correlation function

R (h) = exp

(
−

d∑

k=1

∣∣∣∣
hk

θk

∣∣∣∣
pk

)

where 0 < pk ≤ 2, and hk is the k-th component of h. Note
that with this choice, R (h) tends to 1 when h tends to 0. The
θk may be estimated from the data by maximum likelihood,
to get what is known as empirical Kriging (this setting has
been used for the application reported in Section IV). A
wide range of other choices for the correlation function is
available [6].

Define R as the n× n matrix such that

R(i, j) = R (xi,xj)

r(x) as the n vector

r (x) = [R (x,x1) , ..., R (x,xn)]
T

and F as the n× dim b matrix

F = [f (x1) , ..., f (xn)]
T

In this presentation, we assume, for the sake of simplicity,
that the parameters of the covariance matrix are known,
but remember that in our application they are estimated
by maximum likelihood. The maximum-likelihood estimate
b̂ of the regression coefficients b from the available data
{Xn,yn} is

b̂ =
(
FTR−1F

)−1
FTR−1yn

The predictor of the mean of the Gaussian process, at x ∈ X,
is then given by

Ŷ (x) = fT (x) b̂+ r (x)
T
R−1

(
yn − Fb̂

)

This predictor is linear in yn and interpolates the training
data, as Ŷ (xi) = yi. Another interesting property of Kriging,
which is crucial regarding global search, is the possibility to
compute the variance of the prediction error [10] at x ∈ X

by
σ̂2 (x) = σ2

Z

(
1− r (x)

T
R−1r (x)

)

C. Maximizing Expected Improvement

The idea is to use the Kriging predictor Ŷ to find the (n+
1)-st point at which a simulation of the complete FDI process
will be run. This point is chosen according to a criterion J (·)
that measures the interest of an additional evaluation at x,
given the past results yn obtained at Xn and the Kriging
prediction of the mean Ŷ (x) and variance σ̂2 (x),

xn+1 = argmax
x∈X

J
(
x,Xn,yn, Ŷ (x) , σ̂2 (x)

)

A common choice for J (·) is Expected Improvement [11].
The best available estimate of the minimum of y after the
first n evaluations is ynmin = mini=1...n {yi = y (xi)}. With

u =
(
ynmin − Ŷ (x)

)
/σ̂ (x)

the Expected Improvement is expressed in closed-form as

EI(x) = σ̂ (x) [uΦ (u) + φ (u)]

where Φ is the cumulative distribution function and φ the
probability density function of the normalized Gaussian
distribution N (0, 1). Maximizing Expected Improvement
achieves a trade-off between local search (numerator of u)
and the exploration of unknown areas (where σ̂ is high) and
is therefore well suited for global optimization.

D. EGO algorithm

The global optimization procedure that has been used for
this study, based on the aforementioned elements, is called
EGO, for efficient global optimization [12]. A preliminary
sampling is required to obtain the n points of the initial
design Xn. Latin Hypercube Sampling (LHS) has been
chosen to explore X evenly [13]. The description of EGO
is given in Algorithm 1. The algorithm stops either when
the maximal number of iterations nmax (which depends on
the simulation budget) is reached or when the Expected
Improvement becomes lower than some threshold ǫ. Our
implementation is based on Sasena’s toolbox SuperEGO [14]
and uses the DIRECT optimization algorithm [15] to achieve
Step 5 of Algorithm 1.

III. ILLUSTRATIVE APPLICATION TO THE CHOICE OF A

RESIDUAL-EVALUATION STRATEGY

This section presents the residual-analysis methods that
will be tuned and compared, performance indices as goals
for the optimization procedure and two classical test-cases. It
should be noted that the methodology advocated in this paper
can be applied to a much broader class of problems, and that
the selection considered here is just for the purpose of illus-
tration. Indeed, EGO is particularly well suited to problems
where the evaluation of y is computationally expensive, as
would be the case, for instance, when using cross-validation.



Algorithm 1: EGO

Choose Xn = {x1, ...,xn} by LHS in X1

Compute yn = {y (x1) , ..., y (xn)}2

while maxx∈X {EI(x)} > ε and n < nmax do3

Fit the Kriging model on the known data points4

{Xn,yn} as described in Section II-B
Find ynmin = mini=1...n {y (xi)}5

Find the next point of interest xn+1 by maximizing6

Expected Improvement as described in Section II-C
Compute y(xn+1), append it to yn and append7

xn+1 to Xn

n← n+ 18

end9

A. Strategies to be evaluated

A scalar residual r(t) is a signal that should remains
negligible as long as there is no fault to which it is sensitive,
and that becomes sufficiently large to be noticeable when a
fault occurs. We consider residual-evaluation methods that
provides a scalar binary decision function, which should
return false if the residual is close enough to its initial mean
(usually zero) and true if a jump or a drift occurs in the
signal. The problem to be solved here is to detect a statistical
change in the mean from its initial value zero to an unknown
but different value.

Six candidate methods are to be tuned and compared by
the proposed methodology. The operating principle of each
of them is briefly recalled to highlight the hyperparameters
involved, and references are given for further details. As the
nominal mean µ0 and variance σ2

0 of the signal are usually
required, we estimate them on the first data for all methods
and do not include them in the hyperparameters to be tuned.

1) The “three sigma” rule: This method proposes to
choose bilateral fixed thresholds equal to µ0 ± νσ0, where
ν ≥ 3 usually [16], relying on the fact that 99.7% of the
points of a Gaussian distribution lie within three standard
deviations. The decision takes the value true when the value
of the residual falls outside the thresholds, else the decision
is false.

2) Student’s t-test: This test checks whether the signal
follows a Gaussian distribution N (µ0, σ0), which leads to an
automatic thresholding given by Student’s table considering
that the required confidence level is fixed here at 5% [17].
The test is applied to a sliding window of width N .

3) Generalized Likelihood Ratio (GLR) test: This test is
based on the likelihood ratio Λ(r) of the probability that
the mean of r is µ1 6= µ0 to the probability that it is µ0,
still assuming that the signal is Gaussian [18], [19]. The
generalized version uses the maximum-likelihood estimate
µ̂1 of µ1 to allow the detection of a change of unknown
magnitude. The practical implementation using a sliding
window of width N and the log-likelihood ratio is given

by
{ ∑N

t=1 r(t) >
σ2

0

µ̂1−µ0

ln (λ) + N(µ0−µ̂1)
2 =⇒ decide true

else =⇒ decide false

where the threshold λ is one of the hyperparameters.
4) Sequential Probability Ratio Test (SPRT): The SPRT is

very similar to the GLR, as it also uses the likelihood ratio on
a sliding window of width N . However, the minimum change
detection size µ1 has to be specified, and the threshold λ
is determined by the desired false-alarm and non-detection
probabilities, respectively α and β [19]. The following
decisions are taken at each step:





Λ < β
1−α

=⇒ decide false

Λ > 1−β
α

=⇒ decide true
else take no decision

5) CUSUM test : No statistical hypothesis is needed here.
This two-sided test is expressed as follows [19][20]

{
S1(t) = max (S1(t− 1) + r(t)− µ0 − δ/2, 0)
S2(t) = max (S2(t− 1)− r(t) + µ0 − δ/2, 0)

where δ is the minimal size of the fault to be detected. The
decision rule is then

{
(S1 > λ) or (S2 > λ) =⇒ decide true

else =⇒ decide false

where the threshold λ is one of the hyperparameters.
6) Randomised SubSampling (RSS): This very recent

method, proposed in [21], uses M subsamplings of the signal
on a sliding window of width N . The sum of the errors
with respect to the expected mean µ0 is computed on each
subsample. The decision is false if at least q of the M sums
are greater than zero and at least q of the M sums are smaller
than zero, else the decision is true. An interesting property
of the test is that the expected probability of false alarm is
αexp = 2q/M .

Table I summarizes the hyperparameters involved in the
methods considered.

TABLE I: Hyperparameters of the candidate methods

3–Sigma Student GLR SPRT CUSUM RSS

ν N N, λ N, µ1, α, β δ, λ N, q,M

B. Performance indices

We propose to use some of the quantitative indices defined
within the DAMADICS benchmark [22]. Figure 1 shows
time zones in the evolution of the Boolean decision function
that are the basis of the definition of the performance indices.
The value of the function before ton and after thor is not to
be taken into account, while tfrom is the instant at which the
fault occurs. The indices that will be used for performance
evaluation are

• the detection delay tdt, which is the time elapsed
between the fault occurrence time tfrom and the last
instant of time at which the decision signal switched
from false to true;



Fig. 1: Time zone parameters for the definition of perfor-
mance indices

• the false-detection rate rfd =
(∑

i t
i
fd

)
/ (tfrom − ton),

where tifd is the i-th period of time between ton and
tfrom where the decision is true;

• the non-detection rate rnd = 1 − rtd, where rtd =(∑
i t

i
td

)
/ (thor − tfrom) is the true-detection rate with

titd the i-th period of time between tfrom and thor where
the decision is true.

C. Test-cases

The classical test-cases [19], [20], [21] that will be used
correspond to a Gaussian signal with unit variance and a
signal uniformly distributed on [−2; 2]. Both signals consist
of 1000 points with a jump in the mean from 0 to 1 at
tfrom = 500, with ton = 0 and thor = 1000 (see Figure 2).
They have been generated with a seed equal to 7361731 in
Matlab.

Fig. 2: Gaussian (left) and Uniform (right) test-cases

IV. RESULTS

A. Setting

The initial sampling consists of an LHS of 10d points
(d = dim x), as suggested in [12]. The nominal mean
and variance of the signals are estimated on the first 100
data points. Stopping parameters are nmax = 100 and
ε = 10−4. This means that 100 simulations are to be run
at most and prove to be most of the time not even necessary.
This is a clear advantage of Kriging-based optimization,
as evolutionary algorithms would typically require many
thousands evaluations.

The cost function of the global optimization problems
considered by EGO is scalar. The simplest way to achieve
multiobjective optimization with the performance indices
defined in Section III-B is to minimize some weighted global
cost function c = wfdrfd +wndrnd +wdttdt where the w(·)s
are positive weights to be chosen. As the two indices rfd

and rnd take values in [0; 1], the weights wfd and wnd can be
taken equal to 1, for an unprejudiced trade-off. The detection
delay could also be included in the criterion, but should
be normalized to match the range of the two other indices.
Two continuous cost functions have been used in this study,
c1 = rfd + rnd and c2 = rfd + rnd + 0.01 · tdt. The first
one achieves the trade-off between false-detection and non-
detection without taking explicitly delay into account, unlike
the second one that also seeks for a reduced detection delay.

The feasible hyperparameter search spaces for all methods
are indicated in Table II. Note that N , q and M are integers.

B. Results

The tuning results obtained on the two test-cases with
the cost functions c1 and c2 for the candidate methods are
presented in Tables III, IV, V and VI. The optimal values of
the cost and the corresponding ranking of the methods are
given, along with the values taken by the three performance
indices from Section III-B and the corresponding hyperpa-
rameter tuning. Figures 3 and 4 show the decision functions
corresponding to the best setting for each method on both
test-cases. Explorations of the hyperparameter spaces (those
with no more than two hyperparameters) by the global-
optimization algorithm EGO are displayed on Figure 5.
An acceptable tuning has been successfully found for each
method, within nmax runs of the simulation. Although the
examples treated here contain no more than four hyperpa-
rameters, nothing in the method forbids considering higher-
dimensional problems.

Even if these two test-cases are not sufficient to assess
the absolute ability of these methods, some trends can be
spotted. It appears that the 3-sigma method is not well
suited to detect a change of the same order of magnitude
as the standard deviation of the signal. Student’s test and the
GLR test perform better if the Gaussian hypothesis stands
true. The best results have been obtained with the SPRT
test, the RSS approach and especially the CUSUM test. A
possible explanation is that the latter two tests are not based
on statistical hypothesis and only require the noise to be
symmetrically distributed around the mean.

The two criteria often (but not always) yield similar
results. This is due to the complementary goal shared by
the minimization of tdt and rnd. To check the sensitivity
of the results to the choice of the initial LHS, we ran the
EGO algorithm several times with randomly chosen initial
samples. The results proved to be quite robust to initialization
and none of them falsified the conclusions presented here
(e.g., 250 runs for Student tuning with c1 gave a mean of
0.0561 with standard deviation of 4.5 · 10−7 for the best
cost).

V. CONCLUSIONS AND PERSPECTIVES

We have presented a methodology based on computer
experiment and Expected Improvement techniques for tuning
the hyperparameters of all the approaches that we wish to
compare. The methodology is applicable to any parameter
tuning problem, assuming that a computer simulation of the



(a) 3-sigma (b) Student (c) GLR

(d) SPRT (no decision: 0.5) (e) CUSUM (f) RSS

Fig. 3: Decision functions on the Gaussian test-case

(a) 3-sigma (b) Student (c) GLR

(d) SPRT (no decision: 0.5) (e) CUSUM (f) RSS

Fig. 4: Decision functions on the Uniform test-case

problem is available and that performance indices are com-
putable. Kriging acts as a surrogate and simple-to-compute
approximation of the complicated simulation leading to the
evaluation of the performance indices. A global optimization
procedure using the Kriging predictor then looks for the best
real-valued hyperparameters.

The practicability of the methodology has been suc-
cessfully illustrated through the selection of a residual-
analysis strategy among various change-detection methods.
Future work will address the evaluation of whole diagnosis
strategies, comprising a residual generator coupled with
an analysis algorithm on representative case-studies. These
methods will necessarily imply more hyperparameters and
the practical applicability of the method to larger dimen-
sions will therefore be addressed. As a more general FDI
case-study will involve model and measurement uncertainty,
there is also the need to take into account environmental

variables [6] (time of occurrence of faults, noise level,
model uncertainty level...). Other multiobjective optimization
techniques may also be investigated.

This paper employed the most classical method for
Kriging-based global optimization, namely EGO. Alternative
approaches, such as IAGO [23] could also be considered.

(a) CUSUM (b) GLR

(c) 3-sigma (d) Student

Fig. 5: Exploration of some hyperparameter spaces by EGO ;
best tuning is in red
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